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The motion of flexible fibres suspended in an incompressible fluid is of interest
to researchers in a wide variety of fields, including reinforced composite materials,
biotechnology, and the pulp and paper industry. In this work, we concentrate on the
application to pulp fibres and demonstrate how the complex hydrodynamic interac-
tion between a flexible fibre and the surrounding fluid can be simulated using the
immersed boundary method. The computations involve a single fibre suspended in
a two-dimensional shear flow at moderate Reynolds number. Previous experimen-
tal work differentiates the observed fibre motions into a well-defined set of “orbit
classes,” which are reproduced in our simulations for fibres with varying flexibility.
The computed fibre orientation angle distributions are compared to classical theo-
retical results and shown to exhibit a skewness which is not captured by either the
linear theory or other recent numerical computations that ignore the fibre–fluid in-
teraction. These simulations set the stage for further work in modeling flows with
multiple fibres in three dimensions for the purpose of improving the papermaking
process. c© 1998 Academic Press

Key Words:flexible fibres; pulp fibres; immersed boundary method; fluid–structure
interaction.

1. INTRODUCTION

A thorough understanding of the behaviour of pulp fibres in suspension is extremely
important to the pulp and paper industry in many stages of the papermaking process. The
output of mechanical pulp refiners is a suspension of fibres of varying length and flexibility.
Moderately flexible fibres are more desirable than rigid ones because they have larger relative
bonding area and thus form paper with higher tensile strength and better printability [8]
(inflexible fibres can be sent through a secondary refiner for enhancement of their flexibility).
Hence, it is important to separate fibres based on their flexibility in order to produce high

147

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press

All rights of reproduction in any form reserved.



           

148 STOCKIE AND GREEN

quality paper. One method of performing this separation is to suspend the fibres in the shear
flow generated by a pressure screen. A knowledge of the hydrodynamic behaviour of fibres
with differing length and flexibility is essential to understanding the separation process.

A considerable amount of theoretical work has been done on modeling fibres, since
fibre suspensions appear in many applications other than papermaking. Much of the theory
centers around the motion of rigid cylindrical rods immersed in low Reynolds number or
Stokes flows. Attempts have been made to add a small degree of flexibility, but these results
are usually fairly limited in their application. Accordingly, much of the work on flexible
fibres has been experimental, although more recently several numerical simulations have
been undertaken.

The main purpose in this paper is to demonstrate that the complex interaction between
a fibre and fluid can be handled using theimmersed boundary method. This method was
originally developed by Peskin [21] to simulate the flow of blood in the heart. It has since
been applied to a diverse range of other applications involving swimming microorganisms
[9], aggregation of blood platelets [10], biofilms [5], particle suspensions [11, 30], and
plasma simulations [18]. The immersed boundary framework extends very naturally to
handle flexible fibres in suspension, and we will show that the full range of observed planar
fibre motions is reproduced in two-dimensional simulations.

The immersed boundary method’s main advantages are its simplicity and geometric
flexibility, which account in large part for its widespread use. It is a mixed Eulerian–
Lagrangian scheme that combines the efficiency inherent in using a fixed Cartesian grid
to compute the fluid motion, along with the ease of tracking the immersed boundary at
a set of moving Lagrangian points. The key idea in this method is to replace the fluid–
material interface with appropriate contributions to a force density term in the Navier–Stokes
equations. The internal boundaries are thereby eliminated and a simple finite difference
scheme can be used to solve the fluid equations, with the influence of the immersed boundary
relegated to an inhomogeneous forcing term that is distributed onto fluid points that lie near
the interface. The interface is modeled very simply using a data structure composed of
“spring-like” links between adjacent points, which facilitates the handling of immersed
boundaries of nearly arbitrary shape, size, and configuration.

We begin in the next section with an overview of the theoretical and experimental work
that has been done on flexible pulp fibres, as well as more recent attempts to simulate their
motion in computations. The mathematical framework used to model immersed fibres and
the corresponding numerical method are described in Sections 3 and 4. We then present a
series of pulp fibre simulations in Section 5 and draw comparisons with previous experiments
and computations.

2. BACKGROUND: PULP FIBRES

2.1. Theory and Experiments

As early as 1922, Jeffery studied the motion of a single rigid, neutrally buoyant, elliptical
particle in a homogeneous Stokes flow [17]. He proved that the center of the particle follows
streamlines and that when subjected to a Couette flow it rotates about its center according
to

ϕ(t) = tan−1

[
re tan

(
Gret

r 2
e + 1

)]
, (1)
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FIG. 1. Jeffery’s ellipsoidal particle immersed in a linear shear flow.

whereϕ is the angle that the major axis of the ellipse makes with the vertical,G is the shear
rate, andre is the ratio of the lengths of the major and minor axes of the ellipsoid (refer to
Figs. 1 and 2).

Two things can be deduced from this formula: first, the particle has a nonuniform angular
velocity which is largest when the particle’s major axis is at right angles to the flow direction
(ϕ = 0◦) and drops to a minimum atϕ = 90◦; second, the period of motion is a constant,
given by

T = 2π

G

(
re + 1

re

)
, (2)

which is approximatelyT ≈ 2πre/G for long, thin ellipsoids (whenre À 1).
Wood pulp is not composed of these idealised ellipsoids, however, but rather hollow,

cylindrical fibres of length 0.1 to 0.3 cm with aspect ratios ranging from 60 to 400.
Anczurowski and Mason [1] showed that Jeffery’s equation (1) could be used to describe the
motion of rigid, cylindrical fibres by replacingre with anequivalent ellipsoidal axis ratio
r ∗

e , which is chosen by matching periods from experiments. Cox [4] found expressions for
the force and torque on particles of various shapes in response to shear flow. He also derived
an approximate formula for the equivalent aspect ratio for particles of various shapes, which
compares very well with experiments.

While Jeffery’s equation is a good approximation for rigid fibres, experiments establish
that it cannot be applied to fibres that experience significant bending [19]. As a consequence,

FIG. 2. A plot of angular displacement of the rotating ellipsoid in thex − y plane versus nondimensionalised
time (for re = 60), predicted by theory.
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TABLE I

much of the work on flexible fibres has focused on experimental observations of the peri-
ods and types of motion. Forgacset al. [15] observed in experiments involving very dilute
suspensions (with concentrations less than 0.01%) that fibres are essentially isolated and
particle interactions can be neglected. When subjected to laminar shear, fibres tend to ori-
ent themselves in the direction of the shear flow, and when in motion they either rotate
in very well-defined orbits, or bend in some predictable fashion. Experiments by Mason
and co-workers [2, 19] identified a wide range of fibre behaviours, which they separated
into distinctorbit classesbased on the flexibility of the fibre. We have summarised the
orbits which are two-dimensional in nature in Table I, since these are the only motions
that can be simulated by our 2D fibre model (there are several other types of orbit involv-
ing nonplanar motions, such as spinning in the axial direction that we have not included
here).

Rigid fibres (class I) rotate as solid cylinders, with angular velocity that reaches a max-
imum when the fibre is aligned at right angles to the direction of the shear flow. Flexible
fibres have several possible modes of rotation, the simplest of which is called aspringy
rotation (class II), where the fibre still revolves but deforms into the shape of an arc during
the spin. In theloopor S-turn(III A) andsnake turn(III B), the fibre is deformed into a more
intricate curved intermediate shape, after which it straightens out once again (the S-turn is
rarely observed in experiments except for very carefully chosen initial configurations and a
fibre with a high degree of symmetry [2]). The final class-IV orbit corresponds to a fibre that
performs a snake-like turn but never straightens out, continuing to loop over itself; this is
called acomplex rotation. Forgacset al.[15] used measurements of fibre flexibility to show
that the various orbit classes occurred for different fibre stiffness values, with the stiffness
decreasing as one moves down in the table. Differences also arise in orbital motion of fibres
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when the shear rate and fibre length are varied, keeping the other physical parameters the
same [14]. Fibre motion is thus a function of shear rate, bending stiffness, and fibre length.

2.2. Computational Approaches

The motion of flexible fibres in response to a shear flow can be quite intricate, and the
analytical results cannot capture the full range of complexity of observed orbits. Further-
more, due to the small size of the fibres and the difficult and time-consuming process of
accumulating accurate flow measurements, there are considerable restrictions placed on the
information that can be culled from experiments. Hence, numerical simulations present an
ideal opportunity to gain a deeper understanding of flexible fibre motion by studying the
fine structure of fluid and fibre behaviour.

There have been several recent efforts to simulate fibre motion numerically. Yamamoto
and Matsuoka [33] approximate a fibre as a chain of bonded spheres that are free to stretch,
bend, and twist relative to each other. In this model, there is no hydrodynamic coupling
between fluid and fibre: the fluid undergoes a given linear shear, and the motion of the fibre
is determined by solving a set of dynamic equations with a given applied fluid force. Links
between the spherical elements are governed by three stiffness constants (for stretching,
bending, and twisting motions) whose values depend on the radii of the spheres and Young’s
modulus for the material. This work has since been extended to simulate large systems of
particles [34] and also incorporates forces of attraction and repulsion between individual
fibres.

Wherrettet al.[32] implemented a slightly modified version of the Yamamoto–Matsuoka
model, which uses cylindrical elements instead of spheres. The stretching and bending
stiffnesses are modified to include the aspect ratio of the elements, and the simulations
are two-dimensional so that torsional motions are ignored. They derive a dimensionless
bending number, which is used to relate the changes in computed periods of revolution
to fibre flexibility. The work of Ross and Klingenberg [26] made use of another similar
mechanical model, consisting of linked prolate spheroids. They eliminate axial stretching
by linking the elements withball and socket joints—real fibres do not stretch apprecia-
bly, even in highly sheared flows, and so this aspect of their model seems particularly
advantageous.

Another class of method that has proven to be particularly well-suited for simulating
many flows with complex geometry is the boundary element method. Ingber and Mondy
[16] use this approach to study the motion of cylindrical particles in a Stokes flow, including
the interactions with other particles and the channel walls.

In all of the work just mentioned, the influence of the fibres on the fluid has been neglected.
Another approach has been to model fibres as simple rigid rods and concentrate instead on
the hydrodynamic coupling between the fibres and the fluid. A rheological model for non-
dilute fibre suspensions was used in [24, 25] to compute changes in the velocity field and
relative viscosity of the fluid due to the presence of many fibres. However, this approach
captures only the averaged properties of a large number of suspended particles, whereas the
focus of our work is simulating the motion of individual fibres.

From the previous discussion, there is an obvious gap in the computational work on pulp
fibres; namely, in the simulation of the hydrodynamic interaction between individual pulp
fibres with the surrounding fluid. There is good agreement between theory and experiment
for rigid fibres, and so it is unlikely that hydrodynamic coupling has a significant effect
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in this case. However, the same cannot be said of flexible fibres, and it is here that the
immersed boundary approach can make a substantial contribution.

3. MATHEMATICAL DESCRIPTION

Immersed fibresare flexible, force-bearing filaments, submerged within an incompres-
sible fluid, that are assumed to be neutrally buoyant, massless, and to occupy zero volume.
Three-dimensional immersed surfaces (such as the heart model of [22]) are composed of an
interwoven mesh of such fibres. The typical assumptions made in analytical and numerical
investigations of pulp fibres are that the fluid is Newtonian and incompressible and that the
fibres are massless and neutrally buoyant. Furthermore, the flow conditions under which
individual fibres are considered typically correspond to very low Reynolds numbers (typical
fibre Reynolds numbers occurring in papermaking, based on the fibre diameter and slip
velocity, are in the range 5–50 in a headbox slice and 2–10 in a twin wire former gap). Aspect
ratios are very large, so that fibres are nearly one-dimensional structures. Taken together,
these are precisely the assumptions made for immersed fibres, and so this model seems
particularly well-suited to the representation of flexible pulp fibres. Under these conditions,
the fibres themselves are incompressible, and the fluid–fibre system can be regarded as a
composite, viscoelastic material. The main advantage to this model is that the fluid and fibre
can be described by a single velocity field for which we now derive the equations of motion.

We consider a rectangular fluid domain,Ä, with dimensionsLx × L y, that is filled with
an incompressible, viscous fluid, as pictured in Fig. 3. The top and bottom walls are moved
with constant velocityU in opposite directions, resulting in a shear flow with shearing
rate G = 2U/L y. The boundary conditions are chosen to be periodic in thex-direction.
Suspended within the fluid is a fibre, which can be described by a continuous curve0.

The motion of the fluid–fibre composite is governed by the incompressible Navier–Stokes
equations,

ρ
∂u
∂t

= −ρu · ∇u + µ1u − ∇ p + F, (3)

∇ · u = 0, (4)

whereu(x, t) = (u(x, t), v(x, t)) is the fluid velocity,p(x, t) the pressure,F(x, t) is the
external force, andρ andµ are the constant fluid density and viscosity. Letx = X(s, t)
represent the position of the fibre, wheres is a parameterisation of0 in some reference
configuration (typically,s is taken to be the arclength of the fibre in an unstressed state,
although as the fibre evolves in times will not necessarily be a measure of arclength).

FIG. 3. The periodic channel domain for the pulp fibre simulations, with shearing motion induced by moving
top and bottom walls.
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Gravitational effects can be assumed negligible because the fibre is neutrally buoyant,
which implies that the external forceF arises solely from the action of the elastic fibre. The
force is zero everywhere except on the fibre, and so the fluid body forceF is a distribution
and can be written compactly as the convolution of a fibre force density,f (s, t), with a delta
function,

F(x, t) =
∫

0

f (s, t) · δ(x − X(s, t)) ds, (5)

whereδ(x) = δ(x) · δ(y) is the product of two Dirac delta functions. The immersed fibre is
required to move at the same velocity as neighbouring fluid particles, and so we write

∂X
∂t

= u(X(s, t), t),

=
∫

Ä

u(x, t) · δ(x − X(s, t)) dx, (6)

where this second delta-function form of (6) is used to great advantage in the immersed
boundary method, which we describe in the next section.

The final component needed to close the system of Eqs. (3)–(6) is an expression for the
force per unit length,f (s, t), along the fibre. In the immersed boundary method, the fibre
is tracked at a discrete set ofNb points,X`, for ` = 1, 2, . . . , Nb, which move in time. The
force density at any point is a function of the fibre configuration, which for wood pulp
must take into account the resistance of the individual fibres to stretching/compression and
bending. We take an approach that follows that used for immersed boundary computations
of swimming marine worms [9], wherein the force is modeled by means of a set of force-
bearing “links” between nearby points on the fibre. The fibre force density at a given point,
f `, is written as the gradient of a potential functionE (. . . , X`, X`+1, . . .):

f ` = − ∂E

∂X`

. (7a)

Contributions to the force arising from stretching-resistant links between successive fibre
points can be considered as arising from the potential

E s = 1

2

Nb−1∑
`=0

σs(‖X`+1 − X`‖ − ro)
2, (7b)

whereσs is the stretching stiffness andro is the resting length of the link joining each pair
of points. Each term in the sum represents a spring-like link between two neighbouring
points on the fibre. This can be seen by differentiating the sum atX`, which leads to two
contributions to the force density in (7a) of the form

σs(‖X`+1 − X`‖ − ro)
(X`+1 − X`)

‖X`+1 − X`‖;

the second involving pointsX` andX`−1. Written in this manner, the force is clearly like
that of a spring obeying Hooke’s law, with resting lengthro and stiffnessσs, directed along
the vector joiningX` andX`+1. Figure 4a pictures a link of this type and the forces arising
at each of the two points involved.
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FIG. 4. Two types of links are used to model flexible fibres: stretching/compression-resistant links between
pairs of points; and bending–resistant links between triplets of points.

The bending-resistant links, on the other hand, can be incorporated using a force that
drives the angle between successive triplets of points to a givenequilibrium angleθ0. An
energy function that accomplishes this is

E b = 1

2

Nb−1∑
`=1

σb
[
ẑ · (X` − X`−1) × (X`+1 − X`) − r 2

o sinθo
]2

, (7c)

where ẑ= (0, 0, 1) andr 2
o sinθo is related to theequilibrium curvatureof the fibre (it is

actually the quantity sinθo/ro that has the interpretation of curvature—see [9, pp. 90–92]
for a full discussion). To model a straight rod, we selectθo = 0 for each link. The term
enclosed in square brackets in Eq. (7c) may be rewritten as

‖X` − X`−1‖ · ‖X`+1 − X`‖ sinθ − r 2
o sinθo,

which is approximatelyr 2
o(θ − θo) when the fibre is close to equilibrium; hence, this

contribution to the energy function serves to drive the angle between neighbouring pairs of
links to θo.

The energy function describing a flexible fibre is now given by

E =E s + E b. (7d)

The stretching and bending forces given in (7b) and (7c) are very similar to that used in the
mechanical pulp fibre models mentioned earlier in Section 2.2. The main difference here is
that in the immersed boundary model, the fibre force actually influences the flow of the
surrounding fluid.

4. NUMERICAL METHOD

The immersed boundary method (discussed briefly in the Introduction) is a mixed
Eulerian–Lagrangian finite difference scheme for computing the motion of immersed fibres.
The fluid variables are defined on a fixed, Eulerian,Nx × Ny grid of points, with positions
xi, j = (xi , yj ) = (ih, jh) for i = 1, . . . , Nx and j = 1, . . . , Ny. The values ofNx andNy are
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FIG. 5. The relationship between fluid(©) and fibre(+) grid points.

chosen so that the mesh spacingh = Lx/Nx = L y/Ny is equal in both directions. The fluid
domain is periodic in thex-direction, so that the pointsx0 andxNx are identified with each
other. The fibre position, on the other hand, is a Lagrangian quantity which is discretised as
a set ofNb moving points, so that the parameters is taken at discrete locationss̀ = ` · hb,
wherehb = L f /Nb andL f is the length of the fibre. Both fluid and fibre quantities are sam-
pled at equally spaced timestn = n · k, wherek is the time step. Figure 5 depicts a typical
fluid–fibre grid.

The delta functions appearing in Eqs. (5) and (6) are replaced by a discrete approximation
δh(x), which is the product of 2 one-dimensional discrete delta functions,

δh(xi , yj ) = dh(xi ) · dh(yj ). (8a)

The choice ofdh typically used in immersed boundary computations is

dh(r ) =
{

1
4h

(
1 + cosπr

2h

)
, if |r | < 2h,

0, if |r | ≥ 2h.
(8b)

It will become clear in the algorithm to follow thatδh(x) acts to interpolate quantities
between the fluid and fibre grid points.

We are now in a position to describe the immersed boundary algorithm, which is a
procedure for taking the fluid velocity and fibre position(un

i, j and Xn
i, j ) at time tn and

evolving them to time leveln + 1:

Begin. n = 0.
Step 1. Calculate the force densityf n

` at fibre points using Eqs. (7a)–(7d).
Step 2. Distribute the force density onto nearby fluid grid points using the discrete

form of (5) with the delta function given by (8a) and (8b):

Fn
i, j =

Nb∑
`=1

f n
` · δh

(
xi, j − Xn

`

) · hb.

Step 3. Solve the Navier–Stokes equations (3)–(4) for the velocity at the next time
step,un+1

i, j , using Chorin’s projection scheme [3]. This method is a three-step
process in which:
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1. convection and diffusion are applied implicitly to obtain an “intermediate”
velocity;

2. a Poisson equation is solved for the pressure; and
3. the pressure is used to update the intermediate velocity so that it is

divergence-free.
Step 4. The resulting fluid velocity,un+1

i, j , is interpolated onto neighbouring fibre
points and the fibre is evolved in time:

Xn+1
` = Xn

` + k ·
∑
i, j

un+1
i, j · δ

(
xi, j − Xn

`

) · h2.

Repeat. n 7→ n + 1 .

The algorithm is described in full detail in [23].
If we restrict the dimensions of the domain so thatNx is an integer power of 2, then

a fast Fourier transform (FFT) algorithm may be applied to solve the pressure Poisson
equation in Step 3. The channel domain is periodic inx and so an FFT is performed
in the x-direction only, in contrast with most other immersed boundary computations in
which the fluid domain is taken to be doubly periodic. After transforming the equations,
there remains a banded linear system to be solved for the transformed variables in they-
direction. The pressure is then found by transforming back to real variables by an inverse
FFT. The boundary conditions on velocity and pressure are periodic in thex-direction and
the velocities along the top and bottom walls are prescribed so as to give the required shear
rate. The difference stencil for the pressure at points on or adjacent to the channel walls
is modified using Chorin’s projection scheme, which is described in detail along with the
channel FFT solver in [28, Appendix].

5. COMPUTATIONAL RESULTS

Our main purpose in this paper is to demonstrate that the immersed boundary method is a
useful tool for simulating the motion of pulp fibres. To this end, we present comparisons with
experimental and theoretical results—both qualitative and quantitative—to illustrate that
the computed results capture the important physics of pulp fibre motion. Before presenting
the simulations, we give a brief summary of the physical parameters relevant to pulp fibre
motion and their typical values.

5.1. Physical Parameters

Experiments are often performed on synthetic fibres made of rayon or dacron, immersed
in highly viscous fluids such as corn syrup or castor oil [14]. Representative values of
parameters in experiments are listed in Table II, with references to the literature where
appropriate.

While the physical parameters corresponding to some experiments differ significantly
from those for actual pulp fibres, the observed behaviour is very similar. Therefore, we
will perform simulations on parameters for both situations whenever possible in order to
cover as wide a range of physics as we can, within the stability constraints set by the
numerical scheme. The range of parameters under consideration here correspond to flows
with relatively high viscosity and moderate shear rates, so that the Reynolds numbers lie in
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TABLE II

Parameter Values Units References

ρ (density) 1.0 g/cm3

µ (viscosity) 10–90 (castor oil/corn syrup) g/cm· s [13, 14]
0.01 (water)

G (shear rate) 1–100 (experiment) s−1 [13, 14]

EI (bending stiffness) 0.001–0.07 (paper pulp) g cm3/s2 [7, 8, 27]
0.6 (nylon)

L f (fibre length) 0.1–0.3 cm [7, 32, 13]

rc (aspect ratio) 10–60 (natural) — [32]
40–400 (synthetic) [13, 14]

Re (Reynolds number) 0.01–50 —

the range Re& 50. Although the immersed boundary method is well known to suffer from
severe time step restrictions at high Reynolds numbers [20], this range of Re is well within
what is considered normal in immersed boundary computations.

Our computational test chamber was taken to be a rectangle of dimensions 2 cm× 1
2 cm,

within which was suspended a fibre of length 0.1–0.2 cm. We concentrate mainly on the
effects of shear rate (which has typically been the variable quantity in experiments) and
bending stiffness, since both can be changed easily without modifying the computational
domain. The problem was discretised with a mesh spacing ofh = 1

64 cm (i.e., 128× 32
fluid grid points) and either 40 or 80 fibre points, depending on whether the fibre is 0.1
or 0.2 cm long. The mesh spacing and domain size were chosen so as to minimise the
effect of boundaries on the solution, while at the same time keeping computational cost to
a minimum. We performed a series of tests with various channel aspect ratios to show that
for h = 1

64, the domain could be taken as small as 2× 1
2 without appreciably changing the

qualitative behaviour of the computed solution, where the fibre length ranged from 0.1 to
0.2 cm.

The time stepk required for stability lies the range 2.0–5.0× 10−5. The bending stress
parameterσb has the same interpretation as Young’s modulusE; this quantity is chosen so
that when scaled by an appropriate moment of area,I , the resulting productE · I lies in the
range 0.001–1.0 g cm3/s2. There is no physical equivalent for the stretching stiffnessσs,
since pulp fibres do not stretch appreciably; consequently, we chose a value large enough
(typically from 5000–10000 g/cm3 · s2) so that the fibre length was held to within 2% of its
initial value throughout most simulations.

It will prove particularly useful for us in our comparison of computations with experi-
ments to consider a nondimensional parameter, which is a measure of fibre flexibility. We
mentioned in Section 2.1 that the deformation of an individual fibre is a function of the
fibre length and stiffness and the fluid shear rate. Using a dimensional analysis argument,
it is possible to show [28] that the flow-induced bending of a flexible fibre is governed by
a single, dimensionless parameter,

χ = µGL3

E I
, (9)

which depends on these three quantities, in addition to the fluid viscosity. The derivation of
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χ depends on the drag coefficient, which has markedly different behaviour at low and high
Reynolds number. As a result, Eq. (9) is derived assuming low Re orcreeping flows, which
are typical of the fibres under consideration here (although alternate expressions are given
in [28] for the cases of high Re and three-dimensional flows). It is interesting to note that
the fibre aspect ratio does not appear in the parameterχ, which is a consequence of the fact
that fibre thickness does not play a role in the behaviour of fibres in two-dimensional flows.
In 3D, on the other hand, the dimensional analysis leads to a flexibility parameterχ having
an additional factor ofD, the fibre diameter (see [28]), and hence, it is natural to expect
that a three-dimensional model will have to include the effect of the fibre aspect ratio.

The parameter (9) has appeared before as adimensionless shear ratein [26], and its
reciprocal as abending numberin [32]. The latter work utilised the bending number to
compare qualitative behaviour of fibres, and we will draw a similar comparison for the sit-
uation where hydrodynamic interactions between fluid and fibre are included. The quantity
χ will be used in the pulp fibre simulations in the next section to separate between the
various regimes of fibre motion.

5.2. Simulations

We begin by comparing the qualitative behaviour of solutions for four choices of bending
stiffness that reproduce the orbit classes pictured earlier in Table I. Time sequences from
the simulations are given in Fig. 6 forE I lying between 0.006 and 0.5.

The other parameters were chosen to beG = 10, L = 0.1, andk = 5× 10−5, except for
the first set of images where the stretching stiffness restricted the time step to half that size.
The fibre was initially given a small curvature and inclined at a slight angle to the flow,
so that the various orbits would develop within a reasonable amount of time.

By comparing the images up to timet = 0.09 s, we can see that the flexible fibres complete
their first half-rotation in a significantly shorter time than the rigid fibre. This behaviour
has been observed in experiments [2]. Something which is not apparent from these images
is that, after completing the loop, the fibres in the first three orbits spend a great deal of
time near the horizontal. This is consistent with the theoretical orbits for rigid fibres given
by Jeffery’s equation (1); plots of the orientation angle (the angle between the vertical and
the straight line joining the endpoints of the fibre) versus time look very similar to that
pictured in Fig. 2 for rigid ellipsoids. The fourth fibre never straightens out, and hence, its
classification as a “complex rotation”—the period of rotation is significantly smaller and
the fibre begins another turn very shortly aftert = 0.15 s. The other fibres eventually pass
throughϕ = 90◦ as well and begin a second loop that is essentially identical to the first,
with the period of rotation decreasing as the fibre stiffness decreases.

We can draw a more quantitative comparison with the theoretical predictions in terms of
the amount of time the fibre spends at each angleϕ. We ran another series of computations
with bending stiffness fixed atE I = 0.01 and the shear rate taken between 50 and 80 for
which all fibres underwent snake turns. The orientation angle was measured relative to the
line joining the endpoints of the fibre, and we computed for a period of time comprising at
least four complete rotations. The probability distribution ofϕ, which was estimated from
the computed results, is plotted in Fig. 7 at open points. Given a set of observed orientation
anglesϕn at discrete timestn for n = 1, 2, . . . , M , then the probability thatϕ lies between
the two anglesϕo andϕo + 1 (with 1 chosen “small enough” for plotting purposes) was
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FIG. 6. Time sequences of orbits at time 0.01, 0.03, 0.05, 0.07, 0.09, and 0.15.

estimated using the formula

Prob(ϕ ∈ [ϕo, ϕo + 1]) ≈ #
{
ϕn ∈ [ϕo, ϕo + 1]

}
M

.

Figure 7 also contains the corresponding distributions ofϕ from Eq. (1) plotted as dotted
curves. These theoretical predictions are computed in a similar manner by choosing an
equivalent ellipsoidal axis ratio,r ∗

e , that corresponds to the average period observed for
each of the computed orbits.

From the computational results, it is clear that the fibre spends the majority of its time
near the horizontal, which is consistent with the theory. Disregarding the slight offset of the
curve near the peak, both the size and shape of the computed distribution is comparable to
the prediction from Jeffery’s equation.
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FIG. 7. Distribution of time spent at various angles throughout the motion of a fibre undergoing springy
rotation. The shear rate is varied from 50 to 80. The solid curves with points represent the computed orientation
angles. The dotted curves are the corresponding theoretical predictions from Jeffery’s equation (1) (the axis ratio
is not defined for our linear fibre, and so we have chosen anr ∗

e that gives a Jeffery period equal to the average
period in our simulations for each value ofG).

However, unlike the theoretical and computational results for rigid fibres and simulations
of flexible fibres that ignore hydrodynamic interactions (such as [33, Fig. 10]), the distribu-
tion is not symmetric aboutϕ = 90◦. Rather, there is a tendency for the fibre to remain at an
angle slightly above the horizontal plane. This asymmetry can be measured by the fraction
of the area under the distribution curve that lies to the left of theϕ = 90◦ line, which is 0.70,
0.65, or 0.54, corresponding to whether the flow has shear rateG = 50, 70, or 80, respec-
tively. We claim that the departure from the value of 0.50 for a Jeffery orbit is due to the
interaction between fibre and fluid, which is not included in either previous computations
or the analytical formulae. Although the fibre remains approximately flat when stalled in
the stream-wise direction, it undergoes small flexing motions that cause the streamlines to
curve slightly upward into the upper half of the channel before the fibre reachesϕ = 90◦

(see Fig. 8). This appears to be enough to cause the slight skewness in angle distribution

FIG. 8. Flow streamlines for a fibre stalled at an angleϕ > 0. The streamlines are deformed near the fibre, and
there are narrow zones of recirculation to the front and rear. Note that even though the instantaneous streamlines
cross the fibre, no fluid flows passes through since the fibre is moving with the fluid.
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observed here and is something that we observe in all simulations over a wide range of
parameter values.

This skewness in theϕ-distribution has been observed in both experiments [29] and
numerical simulations [31] involving semi-dilute suspensions—an effect that becomes more
pronounced as the concentration of fibres is increased. In [12], a theoretical model for
handling fibre–fibre interactions is developed, and the authors suggest that the anisotropy
is due to normal stresses in steady shear flow that have also been observed in experiments.
Our numerical simulations demonstrate that a similar phenomenon also occurs when the
influence of an individual fibre on the surrounding fluid is taken into account, something
which to our knowledge has not been considered before. Due to the periodic boundary
conditions applied on the channel ends, we are actually computing the behaviour of a
periodic array of fibres. Increasing the channel length by a factor of 2 (keeping the fibre
length constant) has no noticeable effect on the qualitative behaviour of the fibre orbits, and
so we expect the results to be nearly identical for single fibres as well.

We have also performed a grid refinement study to demonstrate that the orbital motions
just described are insensitive to the choice of spatial mesh. This is particularly important
in our computations, since the interpolation function for the fibre force lends an artificial
“thickness” to the fibre. In long-time integrations, the spatial errors in the scheme accumulate
to such a degree that a convergence study based on the fluid velocity or fibre position would
not yield any meaningful information. However, the qualitative features of fibre orbits, such
as the orientation angle distribution or fibre shape can be easily compared. When the number
of fluid grid points is taken to beN = 64, 128, or 256 (andNb is correspondingly doubled),
the fibre orbits and streamline patterns shown in Figs. 6 and 8 remain essentially the same.
Even for longer simulations over a large number of fibre orbits, the qualitative features of
the solution, such as the orientation angle distribution, are unchanged. Figure 9 depicts the
distribution curve for theG = 80 simulation pictured earlier in Fig. 7, from which it is clear
that there is no significant change in the time spent at various angles when the grid is refined

FIG. 9. Orientation angle distribution for theG = 80 simulation pictured in Fig. 7, with the number of grid
pointsN chosen to be 64, 128, or 256 (withNb = 40, 80, or 160).



            

162 STOCKIE AND GREEN

FIG. 10. Comparison of the orbit class with bending stiffness andχ. The fibre length, shear rate, and viscosity
are also varied, which accounts for the spread of the data from a straight line. The computed orbits are plotted
with open points; experiments from [14, Table III] are plotted as solid points for comparison.

by a factor of two. The skewness measures for the three cases are 0.54, 0.58, and 0.57 as
N increases from 64 to 256. Similar results are also observed for the other values of shear
rate.

Owing to the large amount of experimental data available in the literature, it is a fairly
easy task to compare our computations with observations of actual fibres, particularly with
the aid of the nondimensional parameterχ. To this end, we have run a large number
of simulations with varying fibre length, bending stiffness, shear rate, and viscosity. The
resulting orbit classifications have been plotted in Fig. 10 in terms of the nondimensional
flexibility measureχ and the bending stiffnessEI. Each computed orbit was classified as
belonging to either class I, II, IIIB, or IV, using a different shape of open point for each
(class IIIA was never observed in the computations). Our criterion for judging the orbit class
was based on theexterior angle, α, between the tangent lines at the endpoints of the fibre
(see Fig. 11):

I. If 175◦ < α < 180◦, then the fibre was considered rigid.
II. For 90◦ < α < 175◦, the ends of the fibre always deformed in unison to induce a

springy rotation.
III B. Whenα < 90◦, the ends of the fibre tended to move independently of each other,

leading to a snake turn. This independence of the motion of fibre ends was the same criterion
used in [14] to identify snake turns, although the observation that the division occurred at
an angle of approximately 90◦ was not.

IV. When the fibre never straightened out, the orbit was classified as a complex rotation.

FIG. 11. Definition of the exterior angleα, measured between the ends of a flexible fibre.
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There is a clear division of the orbit classes, which have been drawn as vertical lines at
values ofχ≈ 0.25, 1.0, and 8. This is very strong evidence of our premise thatχ is a useful
measure of fibre flexibility.

To push the comparison even further, we have included on the same set of axes a sequence
of solid points which were taken from experiments by Forgacs and Mason [14], performed
with dacron and rayon filaments suspended in corn syrup or castor oil. In order to ensure that
the scaling between experimental and computational results is the same, we have adjusted
the parameterχ based on a single experimental data point (circled in Fig. 10), which was
classified as lying on the borderline between a springy rotation and a snake turn: the value
of χ was set to equal 1.0 for this experiment, and all other experimental points were scaled
by the same factor. The lineχ= 0.25 captures the division of experimental values between
rigid and springy orbits very sharply, and so it appears that the computational model predicts
quite well the qualitative behaviour of fibre orbits observed in experiments.

These results verify that the immersed boundary method can indeed be used to simulate
the motion of flexible fibres at low Reynolds number. The qualitative behaviour of fibre orbits
is very similar to what is observed in experiments, both in terms of the orbit classification
and the distribution of angular displacement throughout the orbital period.

6. CONCLUSIONS

In this work, we have introduced a new application of the immersed boundary method
to simulating the flow of pulp fibres in two dimensions. This work is of particular interest
to the papermaking industry, as it is one of the first attempts to compute the hydrodynamic
coupling between a flexible fibre and an incompressible fluid. We demonstrate that the
method reproduces the tumbling motions of fibres observed experimentally in shear flows
for reasonable physical parameters. Comparisons of the fibre orientation angle distribution
with theoretical predictions and experimental observations are also in very close agreement.
We also show that the immersed boundary model is able to capture the influence of the fibre
on the fluid, which is manifested as a tendency for pulp fibres suspended in a horizontal
shear flow to remain inclined at angles slightly above the shear direction—a phenomenon
not seen either in other simulations or theory that ignores the fluid–fibre interaction. As a
consequence, the immersed boundary method consequently shows considerable promise as
a qualitative tool in pulp fibre modeling.

While we have restricted ourselves to two-dimensional simulations of isolated pulp fibres
and comparisons to planar fibre motions, the immersed boundary method also has great
potential for future applications in many other aspects of fibre motion. We have so far ignored
several other orbit classes that are fundamentally three-dimensional and other important 3D
effects such as the ability of fluid to flow easily around the sides of a thread-like fibre.
We plan to extend our method to 3D in the near future, using a “bundle” of interwoven
immersed fibres to represent a flexible fibre with finite thickness. This is essential in 3D
flows, where the fibre aspect ratio plays an important role.

We also plan to include the effects of interactions between individual fibres in semi-dilute
pulp suspensions where aggregation of fibres, orflocculation, is an important factor. By
including both fibre–fibre and fibre–fluid forces, we hope to be able to go further in accurately
predicting the motion of fibres in suspension. Extensive immersed boundary computations
of multiparticle systems have already been performed by Peskin and Fogelson [11], who
remarked that they could perform simulations of 1000 or so particles in two dimensions,
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with the advantage of the immersed boundary method being that the computational work
increases onlylinearly with the number of particles. These authors incorporate particle–
particle interactions using appropriate modifications to the force in the fluid equations,
which we plan to conform with the physics of pulp fibre interaction using the previous
work on aggregation of slender particles [6, 34]. By incorporating the third dimension and
interparticle forces, we can significantly increase the range of flow phenomena that can be
investigated using the immersed boundary method in the papermaking process.

Our pulp fibre simulations to this point have neglected fibre inertia, which plays a sig-
nificant role in some situations, such as separation of fibres in a hydrocyclone. Massive
particles can be accounted for in the immersed boundary model by including a variable
density in the momentum equations, as described in [23]. Each fibre contributes a singular
mass distribution to the fluid of the form

ρ(x, t) = ρo +
∫

0

m(s) · δ(x − X(s, t)) ds,

wherem(s) is theadditional mass per unit lengthof the fibre (which can be negative), and
ρo is the constant fluid density in the absence of the fibres. A variable density precludes the
use of an FFT solver for the pressure, and so this extension will require development of an
alternate fast fluid solver.
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