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The motion of flexible fibres suspended in an incompressible fluid is of interest
to researchers in a wide variety of fields, including reinforced composite materials,
biotechnology, and the pulp and paper industry. In this work, we concentrate on the
application to pulp fibres and demonstrate how the complex hydrodynamic interac-
tion between a flexible fibre and the surrounding fluid can be simulated using the
immersed boundary metho@ihe computations involve a single fibre suspended in
a two-dimensional shear flow at moderate Reynolds number. Previous experimen-
tal work differentiates the observed fibre motions into a well-defined set of “orbit
classes,” which are reproduced in our simulations for fibres with varying flexibility.
The computed fibre orientation angle distributions are compared to classical theo-
retical results and shown to exhibit a skewness which is not captured by either the
linear theory or other recent numerical computations that ignore the fibre—fluid in-
teraction. These simulations set the stage for further work in modeling flows with
multiple fibres in three dimensions for the purpose of improving the papermaking
process. © 1998 Academic Press

Key Wordsflexible fibres; pulp fibres; immersed boundary method; fluid—structure
interaction.

1. INTRODUCTION

A thorough understanding of the behaviour of pulp fibres in suspension is extrer
important to the pulp and paper industry in many stages of the papermaking process
output of mechanical pulp refiners is a suspension of fibres of varying length and flexib
Moderately flexible fibres are more desirable thanrigid ones because they have larger re
bonding area and thus form paper with higher tensile strength and better printabilit
(inflexible fibres can be sent through a secondary refiner for enhancement of their flexibi
Hence, it is important to separate fibres based on their flexibility in order to produce |
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148 STOCKIE AND GREEN

quality paper. One method of performing this separation is to suspend the fibres inthe s
flow generated by a pressure screen. A knowledge of the hydrodynamic behaviour of fil
with differing length and flexibility is essential to understanding the separation process

A considerable amount of theoretical work has been done on modeling fibres, si
fibre suspensions appear in many applications other than papermaking. Much of the th
centers around the motion of rigid cylindrical rods immersed in low Reynolds number
Stokes flows. Attempts have been made to add a small degree of flexibility, but these re:
are usually fairly limited in their application. Accordingly, much of the work on flexible
fibres has been experimental, although more recently several numerical simulations |
been undertaken.

The main purpose in this paper is to demonstrate that the complex interaction betw
a fibre and fluid can be handled using fhemersed boundary methodhis method was
originally developed by Peskin [21] to simulate the flow of blood in the heart. It has sin
been applied to a diverse range of other applications involving swimming microorganis
[9], aggregation of blood platelets [10], biofilms [5], particle suspensions [11, 30], al
plasma simulations [18]. The immersed boundary framework extends very naturally
handle flexible fibres in suspension, and we will show that the full range of observed pla
fibre motions is reproduced in two-dimensional simulations.

The immersed boundary method’s main advantages are its simplicity and geome
flexibility, which account in large part for its widespread use. It is a mixed Eulerian
Lagrangian scheme that combines the efficiency inherent in using a fixed Cartesian
to compute the fluid motion, along with the ease of tracking the immersed boundary
a set of moving Lagrangian points. The key idea in this method is to replace the flu
material interface with appropriate contributions to a force density termin the Navier—Stol
equations. The internal boundaries are thereby eliminated and a simple finite differe
scheme can be used to solve the fluid equations, with the influence of the immersed bour
relegated to an inhomogeneous forcing term that is distributed onto fluid points that lie n
the interface. The interface is modeled very simply using a data structure compose
“spring-like” links between adjacent points, which facilitates the handling of immerse
boundaries of nearly arbitrary shape, size, and configuration.

We begin in the next section with an overview of the theoretical and experimental we
that has been done on flexible pulp fibres, as well as more recent attempts to simulate
motion in computations. The mathematical framework used to model immersed fibres
the corresponding numerical method are described in Sections 3 and 4. We then pres
series of pulp fibre simulations in Section 5 and draw comparisons with previous experime
and computations.

2. BACKGROUND: PULP FIBRES

2.1. Theory and Experiments

As early as 1922, Jeffery studied the motion of a single rigid, neutrally buoyant, elliptic
particle in ahomogeneous Stokes flow [17]. He proved that the center of the particle follc
streamlines and that when subjected to a Couette flow it rotates about its center accot
to

R Gret
@(t) = tan {retan(—r(g n 1)] , Q)
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FIG. 1. Jeffery’s ellipsoidal particle immersed in a linear shear flow.

whereg is the angle that the major axis of the ellipse makes with the ver€cal the shear
rate, and is the ratio of the lengths of the major and minor axes of the ellipsoid (refer
Figs. 1 and 2).

Two things can be deduced from this formula: first, the particle has a nonuniform ang
velocity which is largest when the particle’s major axis is at right angles to the flow direct
(p =0°) and drops to a minimum @ = 90°; second, the period of motion is a constant

given by
2 1
T=— — 2
a (re+ re>, 2

which is approximatelyl ~ 2rr/G for long, thin ellipsoids (wheng > 1).

Wood pulp is not composed of these idealised ellipsoids, however, but rather hol
cylindrical fibres of length 0.1 to 0.3 cm with aspect ratios ranging from 60 to 4(
Anczurowski and Mason [1] showed that Jeffery’s equation (1) could be used to describ
motion of rigid, cylindrical fibres by replacing with anequivalent ellipsoidal axis ratio
r&, which is chosen by matching periods from experiments. Cox [4] found expressions
the force and torque on particles of various shapes in response to shear flow. He also d
an approximate formula for the equivalent aspect ratio for particles of various shapes, w
compares very well with experiments.

While Jeffery’s equation is a good approximation for rigid fibres, experiments estab
that it cannot be applied to fibres that experience significant bending [19]. As a consequ

0 100 200 300 400
G-t

FIG. 2. A plotof angular displacement of the rotating ellipsoid in #he y plane versus nondimensionalised
time (forr. = 60), predicted by theory.
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much of the work on flexible fibres has focused on experimental observations of the p
ods and types of motion. Forgaesal. [15] observed in experiments involving very dilute
suspensions (with concentrations less than 0.01%) that fibres are essentially isolatec
particle interactions can be neglected. When subjected to laminar shear, fibres tend tc
ent themselves in the direction of the shear flow, and when in motion they either rot
in very well-defined orbits, or bend in some predictable fashion. Experiments by Mas
and co-workers [2, 19] identified a wide range of fibre behaviours, which they separa
into distinctorbit classesbased on the flexibility of the fibre. We have summarised th
orbits which are two-dimensional in nature in Table I, since these are the only motic
that can be simulated by our 2D fibre model (there are several other types of orbit invc
ing nonplanar motionssuch as spinning in the axial direction that we have not include
here).

Rigid fibres (class 1) rotate as solid cylinders, with angular velocity that reaches a m
imum when the fibre is aligned at right angles to the direction of the shear flow. Flexit
fibres have several possible modes of rotation, the simplest of which is cadiedngy
rotation (class Il), where the fibre still revolves but deforms into the shape of an arc duri
the spin. In thdoop or S-turn(lll A) andsnake turr(lll B), the fibre is deformed into a more
intricate curved intermediate shape, after which it straightens out once again (the S-tu
rarely observed in experiments except for very carefully chosen initial configurations an
fibre with a high degree of symmetry [2]). The final class-IV orbit corresponds to a fibre tt
performs a snake-like turn but never straightens out, continuing to loop over itself; this
called acomplex rotationForgacset al.[15] used measurements of fibre flexibility to show
that the various orbit classes occurred for different fibre stiffness values, with the stiffn
decreasing as one moves down in the table. Differences also arise in orbital motion of fil
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when the shear rate and fibre length are varied, keeping the other physical paramete
same [14]. Fibre motion is thus a function of shear rate, bending stiffness, and fibre ler

2.2. Computational Approaches

The motion of flexible fibres in response to a shear flow can be quite intricate, and
analytical results cannot capture the full range of complexity of observed orbits. Furtl
more, due to the small size of the fibres and the difficult and time-consuming proces
accumulating accurate flow measurements, there are considerable restrictions placed
information that can be culled from experiments. Hence, numerical simulations presel
ideal opportunity to gain a deeper understanding of flexible fibre motion by studying
fine structure of fluid and fibre behaviour.

There have been several recent efforts to simulate fibre motion numerically. Yamar
and Matsuoka [33] approximate a fibre as a chain of bonded spheres that are free to st
bend, and twist relative to each other. In this model, there is no hydrodynamic coup
between fluid and fibre: the fluid undergoes a given linear shear, and the motion of the
is determined by solving a set of dynamic equations with a given applied fluid force. Lii
between the spherical elements are governed by three stiffness constants (for stret
bending, and twisting motions) whose values depend on the radii of the spheres and Yo
modulus for the material. This work has since been extended to simulate large syster
particles [34] and also incorporates forces of attraction and repulsion between indivi
fibres.

Wherrettet al.[32] implemented a slightly modified version of the Yamamoto—Matsuol
model, which uses cylindrical elements instead of spheres. The stretching and ber
stiffnesses are modified to include the aspect ratio of the elements, and the simula
are two-dimensional so that torsional motions are ignored. They derive a dimensior
bending numberwhich is used to relate the changes in computed periods of revolut
to fibre flexibility. The work of Ross and Klingenberg [26] made use of another simi
mechanical model, consisting of linked prolate spheroids. They eliminate axial stretcl
by linking the elements witlball and socket joints-real fibres do not stretch apprecia-
bly, even in highly sheared flows, and so this aspect of their model seems particu
advantageous.

Another class of method that has proven to be particularly well-suited for simulat
many flows with complex geometry is the boundary element method. Ingber and Mo
[16] use this approach to study the motion of cylindrical particles in a Stokes flow, includ
the interactions with other particles and the channel walls.

In all of the work just mentioned, the influence of the fibres on the fluid has been neglec
Another approach has been to model fibres as simple rigid rods and concentrate inste
the hydrodynamic coupling between the fibres and the fluid. A rheological model for n
dilute fibre suspensions was used in [24, 25] to compute changes in the velocity field
relative viscosity of the fluid due to the presence of many fibres. However, this apprc
captures only the averaged properties of a large number of suspended particles, where
focus of our work is simulating the motion of individual fibres.

From the previous discussion, there is an obvious gap in the computational work on
fibres; namely, in the simulation of the hydrodynamic interaction between individual p
fibres with the surrounding fluid. There is good agreement between theory and experi
for rigid fibres, and so it is unlikely that hydrodynamic coupling has a significant effe
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in this case. However, the same cannot be said of flexible fibres, and it is here that
immersed boundary approach can make a substantial contribution.

3. MATHEMATICAL DESCRIPTION

Immersed fibreare flexible, force-bearing filaments, submerged within an incompre
sible fluid, that are assumed to be neutrally buoyant, massless, and to occupy zero vol
Three-dimensional immersed surfaces (such as the heart model of [22]) are composed
interwoven mesh of such fibres. The typical assumptions made in analytical and numel
investigations of pulp fibres are that the fluid is Newtonian and incompressible and that
fibres are massless and neutrally buoyant. Furthermore, the flow conditions under wi
individual fibres are considered typically correspond to very low Reynolds numbers (typi
fibore Reynolds numbers occurring in papermaking, based on the fibre diameter and
velocity, are in the range 5-50in a headbox slice and 2—10 in a twin wire former gap). Asy
ratios are very large, so that fibres are nearly one-dimensional structures. Taken toge
these are precisely the assumptions made for immersed fibres, and so this model s
particularly well-suited to the representation of flexible pulp fibres. Under these conditio
the fibres themselves are incompressible, and the fluid—fibre system can be regardec
composite, viscoelastic material. The main advantage to this model is that the fluid and f
can be described by a single velocity field for which we now derive the equations of motic

We consider a rectangular fluid domasa, with dimensiond_y x Ly, that is filled with
an incompressible, viscous fluid, as pictured in Fig. 3. The top and bottom walls are mo
with constant velocityJ in opposite directions, resulting in a shear flow with shearin
rate G=2U/Ly. The boundary conditions are chosen to be periodic inxtukrection.
Suspended within the fluid is a fibre, which can be described by a continuouslturve

The motion of the fluid—fibre composite is governed by the incompressible Navier—Stol
equations,

au

V.u=0, 4)

whereu(x, t) = (u(x, t), v(x, 1)) is the fluid velocity, p(x, t) the pressurek-(x, t) is the
external force, angh and i« are the constant fluid density and viscosity. ket X(s, t)
represent the position of the fibre, wherés a parameterisation df in some reference
configuration (typicallys is taken to be the arclength of the fibre in an unstressed sta
although as the fibre evolves in tirsevill not necessarily be a measure of arclength).

Q

FIG. 3. The periodic channel domain for the pulp fibre simulations, with shearing motion induced by movil
top and bottom walls.
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Gravitational effects can be assumed negligible because the fibre is neutrally buo
which implies that the external for¢earises solely from the action of the elastic fibre. Th
force is zero everywhere except on the fibre, and so the fluid body foiga distribution
and can be written compactly as the convolution of a fibre force derfiggiyt), with a delta
function,

F(x,t) = /Ff(s,t) -8(X — X(s, 1)) ds, (5)

whered (X) =38(X) - 8(y) is the product of two Dirac delta functions. The immersed fibre
required to move at the same velocity as neighbouring fluid particles, and so we write
X

m = uX(s, t),1t),

= / ux,t) - §(x — X(s, 1)) dx, (6)
Q

where this second delta-function form of (6) is used to great advantage in the imme
boundary method, which we describe in the next section.

The final component needed to close the system of Egs. (3)—(6) is an expression fc
force per unit lengthf (s, t), along the fibre. In the immersed boundary method, the fib
is tracked at a discrete set Nf, points,X,, for =1, 2, ..., Ny, which move in time. The
force density at any point is a function of the fibre configuration, which for wood pt
must take into account the resistance of the individual fibres to stretching/compressior
bending. We take an approach that follows that used for immersed boundary computa
of swimming marine worms [9], wherein the force is modeled by means of a set of for
bearing “links” between nearby points on the fibre. The fibre force density at a given pc
f,, is written as the gradient of a potential function . ., X, X¢41, - . .):

&

f=—
¢ X,

(7a)
Contributions to the force arising from stretching-resistant links between successive |
points can be considered as arising from the potential

Np—1

1

Es=35 D os(IXesa =Xl =10 (7b)
=0

whereos is the stretching stiffness amgis the resting length of the link joining each pair

of points. Each term in the sum represents a spring-like link between two neighbou

points on the fibre. This can be seen by differentiating the suxy avhich leads to two

contributions to the force density in (7a) of the form

Xep1 — X)) |

os(X g1 — Xol| = ro) -t — 2
SR AT X = X

the second involving point, andX,_;. Written in this manner, the force is clearly like
that of a spring obeying Hooke’s law, with resting lengiland stiffness, directed along
the vector joiningX, andX,, ;. Figure 4a pictures a link of this type and the forces arisir
at each of the two points involved.
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(b) Bending link.

FIG. 4. Two types of links are used to model flexible fibres: stretching/compression-resistant links betwe
pairs of points; and bending—resistant links between triplets of points.

The bending-resistant links, on the other hand, can be incorporated using a force
drives the angle between successive triplets of points to a gigailibrium angledy. An
energy function that accomplishes this is

Np—1
1 A .
Eo =5 D 0[2 (X = Xeo1) x (Keaw = Xo) = g sindl]”. (70)
(=1

wherez= (0, 0, 1) andr2sing, is related to theequilibrium curvatureof the fibre (it is
actually the quantity sif,/r, that has the interpretation of curvature—see [9, pp. 90-9-
for a full discussion). To model a straight rod, we selgct 0 for each link. The term
enclosed in square brackets in Eq. (7c) may be rewritten as

IXe — Xe—1ll - [ Xes1 — Xell SinG — rZ singy,

which is approximately 2(¢ — 6,) when the fibre is close to equilibrium; hence, this
contribution to the energy function serves to drive the angle between neighbouring pair
links to 6,.

The energy function describing a flexible fibre is now given by

E =Es+ Ep. (7d)

The stretching and bending forces given in (7b) and (7c) are very similar to that used in
mechanical pulp fibre models mentioned earlier in Section 2.2. The main difference het
that in the immersed boundary model, the fibre force actually influences the flow of 1
surrounding fluid.

4. NUMERICAL METHOD

The immersed boundary method (discussed briefly in the Introduction) is a mix
Eulerian—Lagrangian finite difference scheme for computing the motion of immersed fibr
The fluid variables are defined on a fixed, Euleribdp,x Ny grid of points, with positions
Xi,j =i, y))=(h, jhyfori=1,..., Nyandj =1, ..., Ny. The values oN, andNy are
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FIG.5. The relationship between flui@)) and fibre(+) grid points.

chosen so that the mesh spacing L./Ny = Ly/Ny is equal in both directions. The fluid
domain is periodic in th&-direction, so that the pointg andxy, are identified with each
other. The fibre position, on the other hand, is a Lagrangian quantity which is discretise
a set of N, moving points, so that the paramesas taken at discrete locatioss= ¢ - hy,
whereh, =L ¢ /Np andL ¢ is the length of the fibre. Both fluid and fibre quantities are sar
pled at equally spaced timgs=n -k, wherek is the time step. Figure 5 depicts a typica
fluid—fibre grid.

The delta functions appearing in Egs. (5) and (6) are replaced by a discrete approxim
3n(X), which is the product of 2 one-dimensional discrete delta functions,

Sn(Xi, Yj) = dh(X) - dn(yj). (8a)

The choice ofl, typically used in immersed boundary computations is

L (14 cosEh), if|r| < 2h,
dn(r) = 4h( 2h) . Il < (8b)
0, if [r] > 2h.

It will become clear in the algorithm to follow tha,(x) acts to interpolate quantities
between the fluid and fibre grid points.

We are now in a position to describe the immersed boundary algorithm, which i
procedure for taking the fluid velocity and fibre positiquf'; and X{fj) at timet, and
evolving them to time leveh + 1.

Begin. n=0.

Step 1 Calculate the force density at fibre points using Egs. (7a)—(7d).

Step 2 Distribute the force density onto nearby fluid grid points using the discrete
form of (5) with the delta function given by (8a) and (8b):

Np
Fin,]- = Z f? . Sh(Xi,j —X?) . hb.
=1

Step 3 Solve the Navier—Stokes equations (3)—(4) for the velocity at the next time

step,u{‘jl, using Chorin’s projection scheme [3]. This method is a three-step
process in which:
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1. convection and diffusion are applied implicitly to obtain an “intermediate
velocity;
2. a Poisson equation is solved for the pressure; and
3. the pressure is used to update the intermediate velocity so that it is
divergence-free.
Step 4 The resulting fluid velocitwi’"j-“l, is interpolated onto neighbouring fibre
points and the fibre is evolved in time:

X0+ = X7 +k.Zu{jJ+1.3(xi_j —X7)-h%
ij

Repeat n>n—+1.

The algorithm is described in full detail in [23].

If we restrict the dimensions of the domain so tiNgtis an integer power of 2, then
a fast Fourier transform (FFT) algorithm may be applied to solve the pressure Pois
equation in Step 3. The channel domain is periodixiand so an FFT is performed
in the x-direction only, in contrast with most other immersed boundary computations
which the fluid domain is taken to be doubly periodic. After transforming the equatior
there remains a banded linear system to be solved for the transformed variableg-in th
direction. The pressure is then found by transforming back to real variables by an inve
FFT. The boundary conditions on velocity and pressure are periodic irdirection and
the velocities along the top and bottom walls are prescribed so as to give the required s
rate. The difference stencil for the pressure at points on or adjacent to the channel v
is modified using Chorin’s projection scheme, which is described in detail along with t
channel FFT solver in [28, Appendix].

5. COMPUTATIONAL RESULTS

Our main purpose in this paper is to demonstrate that the immersed boundary methoc
useful tool for simulating the motion of pulp fibres. To this end, we present comparisons w
experimental and theoretical results—both qualitative and quantitative—to illustrate t
the computed results capture the important physics of pulp fibre motion. Before presen
the simulations, we give a brief summary of the physical parameters relevant to pulp fi
motion and their typical values.

5.1. Physical Parameters

Experiments are often performed on synthetic fibres made of rayon or dacron, immel
in highly viscous fluids such as corn syrup or castor oil [14]. Representative values
parameters in experiments are listed in Table II, with references to the literature wh
appropriate.

While the physical parameters corresponding to some experiments differ significat
from those for actual pulp fibres, the observed behaviour is very similar. Therefore,
will perform simulations on parameters for both situations whenever possible in order
cover as wide a range of physics as we can, within the stability constraints set by
numerical scheme. The range of parameters under consideration here correspond to
with relatively high viscosity and moderate shear rates, so that the Reynolds humbers |
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TABLE Il
Parameter Values Units References

o (density) 1.0 glcrh

1 (viscosity) 10-90 (castor oil/corn syrup)  g/es [13, 14]
0.01 (water)

G (shear rate) 1-100 (experiment) “1s [13, 14]

El (bending stiffness) 0.001-0.07 (paper pulp) gk [7,8, 27]
0.6 (nylon)

L¢ (fibre length) 0.1-0.3 cm [7,32,13]

r. (aspect ratio) 10-60 (natural) — [32]

40-400 (synthetic) [13, 14]
Re (Reynolds number) 0.01-50 —

the range Res 50. Although the immersed boundary method is well known to suffer fro
severe time step restrictions at high Reynolds numbers [20], this range of Re is well wi
what is considered normal in immersed boundary computations.

Our computational test chamber was taken to be a rectangle of dimensions % cm,
within which was suspended a fibre of length 0.1-0.2 cm. We concentrate mainly on
effects of shear rate (which has typically been the variable quantity in experiments)
bending stiffness, since both can be changed easily without modifying the computati
domain. The problem was discretised with a mesh spacirh‘[]:tz)%1 cm (i.e., 128x 32
fluid grid points) and either 40 or 80 fibre points, depending on whether the fibre is
or 0.2 cm long. The mesh spacing and domain size were chosen so as to minimis
effect of boundaries on the solution, while at the same time keeping computational co
a minimum. We performed a series of tests with various channel aspect ratios to show
forh= 6i4, the domain could be taken as small as gwithout appreciably changing the
qualitative behaviour of the computed solution, where the fibre length ranged from O.
0.2cm.

The time stegk required for stability lies the range 2.0-5¢@0~°. The bending stress
parametes, has the same interpretation as Young’s mod@uthis quantity is chosen so
that when scaled by an appropriate moment of drgidie resulting produde - | lies in the
range 0.001-1.0 g cifs?. There is no physical equivalent for the stretching stiffness
since pulp fibres do not stretch appreciably; consequently, we chose a value large er
(typically from 5000—-10000 g/citn &%) so that the fibre length was held to within 2% of its
initial value throughout most simulations.

It will prove particularly useful for us in our comparison of computations with expel
ments to consider a nondimensional parameter, which is a measure of fibre flexibility.
mentioned in Section 2.1 that the deformation of an individual fibre is a function of 1
fibre length and stiffness and the fluid shear rate. Using a dimensional analysis argur
it is possible to show [28] that the flow-induced bending of a flexible fibre is governed
a single, dimensionless parameter,

uGLS
X:

El ®)

which depends on these three quantities, in addition to the fluid viscosity. The derivatic
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x depends on the drag coefficient, which has markedly different behaviour at low and h
Reynolds number. As aresult, Eq. (9) is derived assuming low Reeeping flowswhich
are typical of the fibres under consideration here (although alternate expressions are ¢
in [28] for the cases of high Re and three-dimensional flows). It is interesting to note tl
the fibre aspect ratio does not appear in the paramgtehich is a consequence of the fact
that fibre thickness does not play a role in the behaviour of fibres in two-dimensional floy
In 3D, on the other hand, the dimensional analysis leads to a flexibility paragetarng
an additional factor oD, the fibre diameter (see [28]), and hence, it is natural to expe
that a three-dimensional model will have to include the effect of the fibre aspect ratio.
The parameter (9) has appeared before dgrensionless shear rafa [26], and its
reciprocal as @ending numbem [32]. The latter work utilised the bending number to
compare qualitative behaviour of fibres, and we will draw a similar comparison for the <
uation where hydrodynamic interactions between fluid and fibre are included. The quar
x Will be used in the pulp fibre simulations in the next section to separate between
various regimes of fibre motion.

5.2. Simulations

We begin by comparing the qualitative behaviour of solutions for four choices of bendi
stiffness that reproduce the orbit classes pictured earlier in Table I. Time sequences f
the simulations are given in Fig. 6 f&1 lying between 0.006 and 0.5.

The other parameters were chosen tde 10, L =0.1, andk =5 x 107°, except for
the first set of images where the stretching stiffness restricted the time step to half that
The fibre was initially given a small curvature and inclined at a slight angle to the flo
so that the various orbits would develop within a reasonable amount of time.

By comparing the images up to tirhe- 0.09 s, we can see that the flexible fibres complete
their first half-rotation in a significantly shorter time than the rigid fibre. This behaviol
has been observed in experiments [2]. Something which is not apparent from these im
is that, after completing the loop, the fibres in the first three orbits spend a great dea
time near the horizontal. This is consistent with the theoretical orbits for rigid fibres giv
by Jeffery’s equation (1); plots of the orientation angle (the angle between the vertical :
the straight line joining the endpoints of the fibre) versus time look very similar to th
pictured in Fig. 2 for rigid ellipsoids. The fourth fibre never straightens out, and hence,
classification as a “complex rotation"—the period of rotation is significantly smaller ar
the fibre begins another turn very shortly after 0.15 s. The other fibres eventually pass
throughe =90° as well and begin a second loop that is essentially identical to the fir:
with the period of rotation decreasing as the fibre stiffness decreases.

We can draw a more quantitative comparison with the theoretical predictions in term:
the amount of time the fibre spends at each apgl&/e ran another series of computations
with bending stiffness fixed & | =0.01 and the shear rate taken between 50 and 80 f
which all fibres underwent snake turns. The orientation angle was measured relative tc
line joining the endpoints of the fibre, and we computed for a period of time comprising
least four complete rotations. The probability distributiorppfvhich was estimated from
the computed results, is plotted in Fig. 7 at open points. Given a set of observed orienta
anglesp" at discrete timeg, forn=1, 2, ..., M, then the probability thap lies between
the two angleg, andg, + A (with A chosen “small enough” for plotting purposes) was



IMMERSED BOUNDARY SIMULATIONS OF PULP FIBRES 159

EI=05x=0.16 EI=02,x=04 El=004,x=2 EI=0.006, x =13

suny,

(rigid rotation) (springy rotation) (snake turn) (complex rotation)

SCIo=1

FIG. 6. Time sequences of orbits at time 0.01, 0.03, 0.05, 0.07, 0.09, and 0.15.

estimated using the formula

#{‘Pn € [¢o, vo + A]}
M .

Prob(g € [¢o, po + A]) =~

Figure 7 also contains the corresponding distributiong &bm Eq. (1) plotted as dotted
curves. These theoretical predictions are computed in a similar manner by choosin
equivalent ellipsoidal axis ratio g, that corresponds to the average period observed |
each of the computed orbits.

From the computational results, it is clear that the fibre spends the majority of its t
near the horizontal, which is consistent with the theory. Disregarding the slight offset of
curve near the peak, both the size and shape of the computed distribution is compara
the prediction from Jeffery’s equation.
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FIG. 7. Distribution of time spent at various angles throughout the motion of a fibre undergoing sprin
rotation. The shear rate is varied from 50 to 80. The solid curves with points represent the computed orient:
angles. The dotted curves are the corresponding theoretical predictions from Jeffery’s equation (1) (the axis
is not defined for our linear fibre, and so we have chosery @hat gives a Jeffery period equal to the average
period in our simulations for each value @J.

However, unlike the theoretical and computational results for rigid fibres and simulatic
of flexible fibres that ignore hydrodynamic interactions (such as [33, Fig. 10]), the distrit
tionis not symmetric aboyt = 90°. Rather, there is a tendency for the fibre to remain at a
angle slightly above the horizontal plane. This asymmetry can be measured by the frac
of the area under the distribution curve that lies to the left oftked0° line, which is 0.70,
0.65, or 0.54, corresponding to whether the flow has shea@Gat®0, 70, or 80, respec-
tively. We claim that the departure from the value of 0.50 for a Jeffery orbit is due to tl
interaction between fibre and fluid, which is not included in either previous computatic
or the analytical formulae. Although the fibre remains approximately flat when stalled
the stream-wise direction, it undergoes small flexing motions that cause the streamline
curve slightly upward into the upper half of the channel before the fibre reacheXy
(see Fig. 8). This appears to be enough to cause the slight skewness in angle distrib

FIG.8. Flow streamlines for a fibre stalled at an angte 0. The streamlines are deformed near the fibre, anc
there are narrow zones of recirculation to the front and rear. Note that even though the instantaneous strear
cross the fibre, no fluid flows passes through since the fibre is moving with the fluid.
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observed here and is something that we observe in all simulations over a wide rang
parameter values.

This skewness in the-distribution has been observed in both experiments [29] a
numerical simulations [31] involving semi-dilute suspensions—an effect thatbecomesn
pronounced as the concentration of fibres is increased. In [12], a theoretical mode
handling fibre—fibre interactions is developed, and the authors suggest that the aniso
is due to normal stresses in steady shear flow that have also been observed in experil
Our numerical simulations demonstrate that a similar phenomenon also occurs whe
influence of an individual fibre on the surrounding fluid is taken into account, someth
which to our knowledge has not been considered before. Due to the periodic boun
conditions applied on the channel ends, we are actually computing the behaviour
periodic array of fibres. Increasing the channel length by a factor of 2 (keeping the f
length constant) has no noticeable effect on the qualitative behaviour of the fibre orbits.
S0 we expect the results to be nearly identical for single fibres as well.

We have also performed a grid refinement study to demonstrate that the orbital mot
just described are insensitive to the choice of spatial mesh. This is particularly impor
in our computations, since the interpolation function for the fibre force lends an artific
“thickness” to the fibre. Inlong-time integrations, the spatial errors in the scheme accumt
to such a degree that a convergence study based on the fluid velocity or fibre position w
not yield any meaningful information. However, the qualitative features of fibre orbits, st
as the orientation angle distribution or fibre shape can be easily compared. When the nu
of fluid grid points is taken to bBl =64, 128, or 256 (andll, is correspondingly doubled),
the fibre orbits and streamline patterns shown in Figs. 6 and 8 remain essentially the <
Even for longer simulations over a large number of fibre orbits, the qualitative feature
the solution, such as the orientation angle distribution, are unchanged. Figure 9 depic
distribution curve for th& = 80 simulation pictured earlier in Fig. 7, from which it is cleal
that there is no significant change in the time spent at various angles when the grid is re

0.03 . , ___
o R —
256

0.02 |

Distribution

0.01 ¢

30 60 90 120 150
@

FIG. 9. Orientation angle distribution for th@ =80 simulation pictured in Fig. 7, with the number of grid
pointsN chosen to be 64, 128, or 256 (willy, = 40, 80, or 160).
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FIG.10. Comparison of the orbit class with bending stiffness gn@he fibre length, shear rate, and viscosity
are also varied, which accounts for the spread of the data from a straight line. The computed orbits are pls
with open points; experiments from [14, Table Il] are plotted as solid points for comparison.

by a factor of two. The skewness measures for the three cases are 0.54, 0.58, and O.
N increases from 64 to 256. Similar results are also observed for the other values of s
rate.

Owing to the large amount of experimental data available in the literature, it is a fai
easy task to compare our computations with observations of actual fibres, particularly v
the aid of the nondimensional paramejer To this end, we have run a large number
of simulations with varying fibre length, bending stiffness, shear rate, and viscosity. T
resulting orbit classifications have been plotted in Fig. 10 in terms of the nondimensio
flexibility measurex and the bending stiffnedsl. Each computed orbit was classified as
belonging to either class I, II, i, or IV, using a different shape of open point for each
(class Illa was never observed in the computations). Our criterion for judging the orbit cle
was based on thexterior angle «, between the tangent lines at the endpoints of the fibr
(see Fig. 11):

I. If 175° < o < 180, then the fibre was considered rigid.

Il. For 90 <« <175, the ends of the fibre always deformed in unison to induce
springy rotation.

llIB. Whena < 90°, the ends of the fibre tended to move independently of each oth
leading to a snake turn. This independence of the motion of fibre ends was the same crite
used in [14] to identify snake turns, although the observation that the division occurrec
an angle of approximately 9@vas not.

IV. When the fibre never straightened out, the orbit was classified as a complex rotat

R e -

o

FIG. 11. Definition of the exterior angle, measured between the ends of a flexible fibre.
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There is a clear division of the orbit classes, which have been drawn as vertical line
values ofy ~ 0.25, 1.0, and 8. This is very strong evidence of our premisextisa useful
measure of fibre flexibility.

To push the comparison even further, we have included on the same set of axes a sec
of solid points which were taken from experiments by Forgacs and Mason [14], perforr
with dacron and rayon filaments suspended in corn syrup or castor oil. In order to ensur:
the scaling between experimental and computational results is the same, we have ad
the parametex based on a single experimental data point (circled in Fig. 10), which w
classified as lying on the borderline between a springy rotation and a snake turn: the \
of x was set to equal 1.0 for this experiment, and all other experimental points were sc
by the same factor. The ling=0.25 captures the division of experimental values betwes
rigid and springy orbits very sharply, and so it appears that the computational model pre
quite well the qualitative behaviour of fibre orbits observed in experiments.

These results verify that the immersed boundary method can indeed be used to sin
the motion of flexible fibres atlow Reynolds number. The qualitative behaviour of fibre ort
is very similar to what is observed in experiments, both in terms of the orbit classifica
and the distribution of angular displacement throughout the orbital period.

6. CONCLUSIONS

In this work, we have introduced a new application of the immersed boundary met
to simulating the flow of pulp fibres in two dimensions. This work is of particular intere
to the papermaking industry, as it is one of the first attempts to compute the hydrodyn:
coupling between a flexible fibre and an incompressible fluid. We demonstrate that
method reproduces the tumbling motions of fibres observed experimentally in shear f
for reasonable physical parameters. Comparisons of the fibre orientation angle distrib
with theoretical predictions and experimental observations are also in very close agreel
We also show that the immersed boundary model is able to capture the influence of the
on the fluid, which is manifested as a tendency for pulp fibres suspended in a horizc
shear flow to remain inclined at angles slightly above the shear direction—a phenom:
not seen either in other simulations or theory that ignores the fluid—fibre interaction. /
consequence, the immersed boundary method consequently shows considerable pror
a qualitative tool in pulp fibre modeling.

While we have restricted ourselves to two-dimensional simulations of isolated pulp fit
and comparisons to planar fibre motions, the immersed boundary method also has
potential for future applications in many other aspects of fibre motion. We have so far ignc
several other orbit classes that are fundamentally three-dimensional and other importa
effects such as the ability of fluid to flow easily around the sides of a thread-like fik
We plan to extend our method to 3D in the near future, using a “bundle” of interwo\
immersed fibres to represent a flexible fibre with finite thickness. This is essential in
flows, where the fibre aspect ratio plays an important role.

We also plan to include the effects of interactions between individual fibres in semi-di
pulp suspensions where aggregation of fibred|amculation is an important factor. By
including both fibre—fibre and fibre—fluid forces, we hope to be able to go further in accura
predicting the motion of fibres in suspension. Extensive immersed boundary computat
of multiparticle systems have already been performed by Peskin and Fogelson [11],
remarked that they could perform simulations of 1000 or so particles in two dimensic



164 STOCKIE AND GREEN

with the advantage of the immersed boundary method being that the computational w
increases onlyinearly with the number of particles. These authors incorporate particle
particle interactions using appropriate modifications to the force in the fluid equatio
which we plan to conform with the physics of pulp fibre interaction using the previot
work on aggregation of slender particles [6, 34]. By incorporating the third dimension a
interparticle forces, we can significantly increase the range of flow phenomena that cal
investigated using the immersed boundary method in the papermaking process.

Our pulp fibre simulations to this point have neglected fibre inertia, which plays a si
nificant role in some situations, such as separation of fibres in a hydrocyclone. Mas:
particles can be accounted for in the immersed boundary model by including a varig
density in the momentum equations, as described in [23]. Each fibre contributes a sing
mass distribution to the fluid of the form

PO 1) = po +/ m(s) - 5(x — X(s, 1)) ds
r

wherem(s) is theadditional mass per unit lengitf the fibre (which can be negative), and
Po IS the constant fluid density in the absence of the fibres. A variable density precludes
use of an FFT solver for the pressure, and so this extension will require development o
alternate fast fluid solver.
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